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Abstract: In fluid mechanics, the Navier-Stokes equations are non-linear partial differential equations that describe the motion 

of Newtonian fluids. A fluid can be a liquid or a gas. Therefore, the Navier-Stokes equation concerns many phenomena that 

surround us. The analytical resolution, the search for exact solutions of these equations modeling a fluid is difficult. But they 

often allow, by an approximate resolution, to propose a model of many phenomena, such as ocean currents and air mass 

movements in the atmosphere for meteorologists, the behavior of skyscrapers or bridges under the action of wind for architects 

and engineers, or that of airplanes, trains or high-speed cars for their design offices, as well as the flow of water in a pipe and 

many other flow phenomena of various fluids. In mathematics, nonlinearity complicates things. In physics, too, the difficulty 

arises. For this term nonlinearity has its translation in the complexity of the physical phenomena described. This difficulty of 

resolution partly affects the analyses or descriptions of the modeled phenomena. The objective of this work is the search for exact 

solutions of the Navier-Stokes equations in dimension 2 and in dimension 3. The method of the reduced differential transform is 

used to find the exact solutions of these Navier-Stokes equations in 2D and 3D. This method gives an algorithm that favors the 

rapid convergence of the problem to the exact solution sought. Besides the introduction, this article is structured as follows: the 

presentation of the method, its application on the two selected Navier-Stokes problems whose exact solutions are obtained with 

ease, then intervenes the conclusion of the whole work. 

Keywords: Navier-Stokes Equation 2D, Navier-Stokes Equation 3D, Exact Solution,  
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1. Introduction 

In the context of climate change, population growth and 

lack of appropriate urbanization policy, several serious 

problems have become recurrent; especially in developing 

countries with considerable population growth. Among these 

problems there are: the deforestation, the presence of several 

untreated garbage dumps, uncontrolled construction of 

houses or uncontrolled urbanization; this untreated household 

waste pollutes the atmosphere because of the inappropriate 

gases that it can generate. Let us take the case of methane. 

Where does methane come from? Agriculture is the 

predominant source. Emissions generated by livestock, from 

manure and the gastrointestinal waste. These mixtures of 

gases that rise into the atmosphere cause turbulence, and 

other situations. The phenomena of silting of rivers, roads, 

plantations, transport of waste and pollutants are worrying. 

Here, we are in the flows, the transport. We are interested 

Reduced Differential Transform Method in the Navier-Stokes 

equations [12-15]. In the fluid mechanics, the Navier-Stokes 

equations are nonlinear partial differential equations that 

describe the motion of Newtonian fluids (i.e. gases and most 

liquids) [3]. The resolution of these equations modeling a 

fluid as continuous medium with a single phase is difficult. 

Our work is motivated by the search for the exact solution 

of these nonlinear partial differential equations and the 

problematic that arises, namely the manipulation of the 

nonlinear terms. 

The general objective is determining the exact solutions of 

the partial differential equations when they exist. The 

specific objective is determining the exact solutions of the 

Navier-Stokes equations by the reduced differential 

transform method (RDTM). 

Before determining the exact solutions of the chosen 
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problems, a presentation of the method will be made. The 

whole work will end with a conclusion. 

2. Description of the RDTM 

The Reduced Differential Transformation Method (RDTM) 

was first proposed by the Turkish mathematician Yildiray 

Keskin [7, 8]. This method is applicable to a large class if it 

exists. After Yildiray Keskin and Oturanc [9], The RDTM has 

also been used by many authors to obtain analytical 

approximate and in some cases exact solutions to nonlinear 

equations. Several types of nonlinear equations have had their 

different exact solutions easily obtained. We can quote the 

nonlinear Voltera partial integro-differential equation, the 

Telegraph equation The inhomogeneous nonlinear wave 

equation. For more details, we can refer [1, 2, 4-14]. 

Nevertheless, now suppose that function of two variables ���, ��  which is analytic and k-times continuously 

differentiable with respect to space � in the domain of our 

interest [2-6, 16]. Suppose that we can consider this function 

in this form: ���, �� = ����. 
���. Based on the properties of 

differential transform, function can be represented as: ���, �� = �∑ ��
������� ��∑ ���������� � = ∑ �����������                       (1) 

Where the function �����  is called t-dimensional 

spectrum function the of ���, ��. If the function ���, �� is 

analytic and differentiated continuously with respect to time �	and space �	in the domain of interest, then let: 

	����� = ��! � ����� ���, �� ���          (2) 

Where the �-dimensional spectrum function ����� is the 

transformed function. The differential inverse transform of ����� is determined as follows: 

���, �� = ∑ ����������� = ∑ ��!���� � ����� ���, �� ��� �� (3) 

In fact, the function ���, �� can written in a finite series as 

follows, �!"��, �� = ∑ ��"��� �����          (4) # is order of approximate where solution. 

Therefore, the exact solution of the problem is given by ���, �� = lim"→� �!" ��, ��          (5) 

The details for the proper understanding of the reduced 

differential transformation method are well explained by 

Keskin who is the author [12]. Many researchers have also 

contributed to facilitate the understanding and use of this rich 

method [1-3, 6, 7, 9]. 

To illustrate the basic concepts of the RDM, consider the 

following nonlinear partial differential equation written in an 

operator form: (���, �� + *���, �� + +���, �� = ℎ��, ��     (6) 

with initial condition: ���, 0� = ����               (7) 

According to the RDTM, the iteration formula can be 

constructed as follows [1, 3, 5, 7]: �. + 1���0���� = ����� − *����� − +�����	 (8) 

Some basic essential properties of the two-dimensional 

reduced differential transform are presented in Table below 

[1, 2, 4-9, 16]. 

Table 1. The fundamental operations of RDTM. 

Functional Form Transformed Form ���, �� ����� = ��! � ����� ���, �� ���  2��, �� = ���, �� ± 4��, �� 5���� = ����� ± 6���� 2��, �� = 7���, �� 5���� = 7�����	�7	
8	9	:;#8�9#�� 2��, �� = �<�" 5���� = �<=�. − #� 2��, �� = �<�"���, �� 5���� = �<��>"��� 2��, �� = ���, ��4��, �� ?5���� = ∑ 6@�����>@��� =�@�� ∑ �@���6�>@����@��   2��, �� = �A��A ���, ��  5���� = �. + 1�⋯�. + C���0���� = ��0@�!�! ��0@���  2��, �� = ��D ���, ��  5���� = ��D �����  

Functional form: 
�AEFG�D,���DA��F  Transformed form: 

��0H�!�! �A��A ��0H��� 
3. Application 

Two problems have been selected to test the method; one is in dimension 2, the other in dimension 3 [11-13]. 

3.1. Example 1 

Consider the two-dimensional Navier-Stokes equation 
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I�� + ��D + 4�J = K���DD + �JJ�4� + �4D + 44J = K��4DD + 4JJ�                                    (9) 

With the initial conditions ���, L, 0� = −MD0J; 	4��, L, 0� = MD0J                                (10) 

In equations (9), K� denotes the kinematic viscosity of the flow. K� is the ratio O K⁄ , where O denotes dynamic vis-cosity of 

flow, and K the density of flow. 

The application of RDTM to system’s equations (9) gives the algorithm 

�. + 1���0���, L� + ∑ �@����@�� �Q�RA�D,J��D + ∑ 6@�L��@�� �S�RA�D,J��J = K� T�US��DU + �US��JU V              (11) 

�. + 1�6�0���, L� + ∑ �@����@�� �Q�RA�D��D + ∑ 6@�L��@�� �S�RA�D��J = K� T�UQ��D,J��DU + �UQ��D,J��JU V            (12) 

The algorithm is manipulated by varying ., thus 

. = 0: 	����, L� + ����� �QX�D��D + 6��L� �SX�D��J = K� T�USX�D��DU + �USX�J��JU V  

����, L� + MY�D0J� − MY�D0J� = K��−MD0J − MD0J� 

Either ����, L� = −2K�MD0J 

. = 0: 	6���, L� + ����� �QX�D + 6��L� �SX�J = K� T�UQX�D,J��DU + �UQX�D,J��JU V  

6���, L� + MY�D0J� − MY�D0J� = K��−MD0J − MD0J� 

Either 6���, L� = −2K� − MD0J 

. = 1: 	2�Y��, L� + �� �S[�D + �� �SX�D + 6� �S[�J + 6� �SX�J = K� T�US[�D,J��DU + �US[�D,J��JU V  

Either �Y��, L� = −K�YMD0J 

. = 1:	26Y��, L� + �� �Q[�D + �� �QX�D + 6� �Q[�J + 6���� �QX�J = K� T�UQ[�D,J��DU + �UQ[�D,J��JU V  

Either 6Y��, L� = K�YMD0J 

By the same principle of iterations, the following expressions can be deduced 

For . = 2, 

�\��, L� = − ]\ K�\MD0J; 	6\��, L� = ]\ K�\MD0J  

���, L, �� = ∑ ������ ��, L��� = �� + ��� + �Y�Y + �\�\ + ⋯  

���, L, �� = −MD0J − 2K�MD0J� − −K�YMD0J�Y − 43K�\MD0J�\ − ⋯ 

���, L, �� = −MD0J �1 + 2K�� + �Y`X��UY! + �Y`X��a\! + �Y`X��b]! + ⋯   

Either 

���, L, �� = −MD0J ∑ ��! �2K���� =�@�� − MD0JMY`X�  
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The exact solution is: ���, L, �� = −MD0J0Y`X�                                     (13) 

3.2. Example 2 

In this example, the problem is the system of Navier-Stokes equations in space dimension [15]. The problem is the 

following: 

c�� + ��D + 4�J + 2�d = K���DD + �JJ + �dd�4� + �4D + 44J + 24d = K��4DD + 4JJ + 4dd�2� + �2D + 42J + 22d = K��2DD + 2 + 2dd� 	                           (14) 

The initial conditions are: 

efg
fh���, L, i, 0� = ����, L, i, �� = − �Y � + L + i4��, L, i, 0� = 4���, L, i, �� = � − �Y L + i2��, L, i, 0� = 2���, L, i, �� = � + L − �Y i                              (15) 

In equations (14), K� denotes the kinematic viscosity of the flow. K� is the ratio O K⁄ , where O denotes dynamic vis-cosity of 

flow, and K the density of flow. 

The application of the RDTM to each equation of the 3D system of Navier-Stokes equations gives the following algorithms: 

�. + 1���0� + ∑ �@�@�� �S�RA�D + ∑ 6@�@�� �S�RA�J + ∑ 5@�@�� �S�RA�d = K� T �U�DU �� + �U�JU �� + �U�dU ��V        (16) 

�. + 1�6�0� + ∑ �@�@�� �Q�RA�D + ∑ 6@�@�� �Q�RA�J + ∑ 5@�@�� �Q�RA�d = K� T �U�DU 6� + �U�JU 6� + �U�dU 6�V         (17) 

�. + 1�5�0� + ∑ �@�@�� �j�RA�D + ∑ 6@�@�� �j�RA�J + ∑ 5@�@�� �j�RA�d = K� T �U�DU 5� + �U�JU 5� + �U�dU 5�V      (18) 

The manipulation of the values of ., gives: 

For . = 0; 
�� + �� k��k� + 6� k��kL + 5� k��ki = K� l kYk�Y �� + kYkLY �� + kYkiY ��m 

6� + �� k6�k� + 6� k6�kL + 5� k6�ki = K� l kYk�Y 6� + kYkLY 6� + kYkiY 6�m 

5� + �� k5�k� + 6� k5�kL + 5� k5�ki = K� l kYk�Y 5� + kYkLY 5� + kYkiY 5�m 

After all the substitutions and calculations, the following results are obtained: 

�� + �] � − �Y L − �Y i + � − �Y L + i + � + L − �Y i = 0  

Let �� = − n] � 

6� − �Y � + L + i − �Y � + �] L − �Y i + � + L − �Y i = 0  

Let 6� = − n] L 

5� − �Y � + L + i + � − �Y L + i − �Y � − �Y L + �] i = 0  

Let 5� = − n] i 

At the passage of . = 1, the same iterative techniques of calculations, will be applied. From these new formulas deduced 

from the manipulation of the values of . will result the following expressions. After all the substitutions and calculations 

made, it follows 
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�Y = n] T− �Y � + L + iV ;	 	6Y = n] T� − �Y L − �Y iV  

WY = n] Tx + y − �Y zV  

The expressions �\, 6\,5\ are given by the formulas of 

3�\ + �� �SU�D + �� �S[�D + �Y �SX�D + 6� �SU�J + 6� �S[�J + 6Y �SX�J + 5� �SU�d + 5� �S[�d + 5Y �SX�d = 0          (19) 

36\ + �� �QU�D + �� �Q[�D + �Y �QX�D + 6� �QU�J + 6� �Q[�J + 6Y �QX�J + 5� �QU�d + 5� �Q[�d + 5Y �QX�d = 0	           (20) 

35\ + �� �jU�D + �� �j[�D + �Y �jX�D + 6� �jU�J + 6� �j[�J + 6Y �jX�J + 5� �jU�d + 5� �j[�d + 5Y �jX�d = 0	        (21) 

As result: 

�\ = −Tn]VY �;	6\ = −Tn]VY L;	5\ = −Tn]VY i  

By the same calculations applied to formulas (16), (17) and (18), the sequence of terms follows. 

As before, the exact solution is given by the relation: ���, L, i, �� = �� + ��� + �Y�Y + �\�\ + ⋯                             (22) 

���, L, i, �� = − �Y � + L + i − n] �� + n] T− �Y � + L + iV �Y − Tn]VY ��\ + Tn]VY T− �Y � + L + iV �] − Tn]V\ ��s + ⋯	  

The terms are grouped two by two; �� and ��, �Y and �\, �] and �s, �t and �u, and so on; its grouped terms 

factorize like the sum of �� and ��, then lead to the expression: 

���, L, i, �� = T− �Y � + L + i − n] ��V + n] �T− �Y � + L + iV − n] �� �Y + Tn]VY �T− �Y � + L + iV − n] �� �] + ⋯  (23) 

���, L, i, �� = T− �Y � + L + i − n] ��V v1 + n] �Y + Tn]VY �] + ⋯ w	                      (24) 

Since this expression is not the sum of the terms of a classical numerical series, it requires an appropriate transformation or 

writing, to bring out an expression easily identifiable with a Taylor development. This is the case of this problem. Thus 

���, L, i, �� = T− �Y � + L + i − n] ��V ��>xb�U                              (25) 

The calculations for 4��� and 2��� give: 

4��, L, i, �� = T� − �Y L + i − n]��V v1 + n] �Y + Tn]VY �] + ⋯ w                          (26) 

2��, L, i, �� = T� + L − �Y i − n] ��V v1 + n] �Y + Tn]VY �] + ⋯ w                      (27) 

The exact solution of example 2 is given by the expressions: 

���, L, L, i, �� = YD>]J>]d0nD�n�U>]          (28) 

4��, L, L, i, �� = YJ>]D>]d0nD�n�U>]          (29) 

2��, L, L, i, �� = Yd>]D>]J0nD�n�U>]          (30) 

On the physical level or in the reality of physical laws, the 

velocities of flows in classical mechanics cannot be infinite. 

This will not reflect the laws of fluid dynamics. Therefore, 

it is necessary to pose the necessary condition of existence of a 

physically admissible solution. 

These results are valid with the condition 

|�| ≠ Y\  

4. Conclusion 

In general, the search for exact solutions of the 

Navier-Stokes equations in 2D and 3D has not always been 

easy. Great difficulties have often existed. However, the 

RDTM was applied with ease. Good results have been 

obtained. The expected results are the exact solutions of the 

Navier-Stokes problems in 2D and 3D. 

The exact solutions of the two systems of Navier-Stokes 

equations, in 2D and 3D, have been obtained. 

Of course, the calculations are tedious and the method 
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requires a great mastery of the basic concepts. The results 

therefore confirm the effectiveness of the method. It should be 

emphasized that the search for the solution for the 3D case 

requires a good mastery of the handling of Taylor series 

developments. From this RDTM method, for future research, 

it is possible to determine the exact solution of a mathematical 

model coupled with the Navier-Stokes equations, in the cases 

of sedimentary basin formation, transport of pollutants and 

other materials carried, when the problem is well defined. 
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