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Abstract: Every petroleum reservoir requires some means of predicting future performances as well as optimizing recovery 

of hydrocarbons under various operating conditions. Moreover, there is a need to simulate fluid flow in porous media due to 

the uncertainty and heterogeneity that is associated with petroleum reservoirs. Therefore, this study developed 1D finite 

difference explicit and implicit numerical reservoir simulator for modeling single phase flow in porous media. The explicit and 

implicit simulator developments consist of physical modeling, mathematical modeling, discretization of the models with finite 

difference scheme and transformation of the models into computer algorithms. Matlab codes were written to describe the fluid 

flow process to obtain the reservoir pressure distributions for each grid block at each timestep calculation. The explicit 

formulation linear equation was solved by the direct method while the implicit method was solved by the Jacobi iterative 

method. The numerical examples graphical plots generated from the simulator illustrate the average reservoir pressure 

depletion for the finite difference grid blocks. The plots for both the explicit and implicit method indicate decline in average 

reservoir pressure with time. The explicit and implicit simulators show that the implicit formulation is unconditionally stable 

than the explicit formulation. This is because the explicit method under certain conditions generates errors in the numerical 

solutions which tend to go zero during subsequent timestep calculations. Additionally, the porosity sensitivity analyses 

performed show that the average reservoir pressure decline as the porosity decreases from 30% to 10%. Material balance 

method was used to determine the average reservoir pressure decline for a one-year production period. The estimated recovery 

factor at the bubble point pressure is 0.68% of the original oil in place. This low recovery factor is a characteristic of an 

expansion-drive reservoir which has the least efficient recovery mechanism. Finally, the 1D explicit and implicit finite 

difference numerical simulators for predicting single phase flow reservoir pressure distributions during production periods are 

stepping stone towards implementing multiphase fluid flow formulations. 

Keywords: Explicit and Implicit Simulators, Material Balance Method, Jacobi Iterative Method,  

Explicit and Implicit Formulation, Numerical Simulator 

 

1. Introduction 

Reservoir simulation is the science of combining physics, 

mathematics, reservoir engineering, and computer 

programming to develop an engineering tool for predicting 

hydrocarbon reservoir performance under various operating 

strategies Aziz and Settari, 1979.[1] The classical methods of 

predicting reservoir performance include analogical, 

experimental mathematical methods before the advent of 
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reservoir numerical simulators Zhangxin, 2007 [2]. The 

analogical methods utilize features of matured reservoirs that 

are analogous to the new target reservoirs in order to forecast 

production performance of these reservoirs. The 

experimental methods measure the physical properties such 

as saturation, pressure and flow rates in laboratory cores and 

then scale them up to the whole hydrocarbon accumulation. 

Additionally, the mathematical methods use model equations 

to forecast reservoir performance. The comprehensive details 

about these production forecasting methods can be found in 

the works of Ahmed 2006, [3] Chen et al. 2007 [4] Gates 

2007 [5].  

Reservoir simulation is a standard predictive engineering 

tool in the oil and gas industry used to obtain accurate well 

performance predictions for a hydrocarbon reservoir under 

different operating conditions. A hydrocarbon recovery 

project usually involves a huge capital investment of 

hundreds of millions of dollars, and the risk associated with 

its selected development and production strategies must be 

evaluated and minimized. These risks include such important 

factors as the complexity of a petroleum reservoir and the 

fluids filling it, the complexity of hydrocarbon recovery 

mechanisms, and the applicability of predictive methods. 

These complexities can be taken into account in reservoir 

simulation through data input into the simulation model, and 

this applicability can be estimated through sound engineering 

practices and accurate reservoir simulation. Therefore, this 

research involves the development of 1D numerical simulator 

using explicit and implicit finite difference numerical scheme 

for predicting pressure distribution in a production reservoir 

with the following objectives: 

(1) To physically model single-phase fluid flow processes 

in the reservoir incorporating physics of the underlying 

physical phenomenon 

(2) To derive a numerical model with the basic properties 

of both the physical and mathematical models 

(3) To develop computer algorithms (Matlab programming 

codes) to solve efficiently the systems of linearized 

algebraic equations arising from the numerical 

discretization. 

(4) To use the developed simulator to predict average 

reservoir pressure decline. 

(5) To validate the developed simulator using the material 

balance method. 

This research work is organized into five sections as 

follows: Section 2 describe the methodology for finite 

difference formulation. Section 3 describes the results and 

discussion from the ID explicit and implicit simulators 

developed. Finally, section 4 summarizes the conclusions 

drawn from this study. [6] 

2. Methodology for Finite Difference 

Formulation 

The problem to be solved in reservoir modeling is to 

advance the simulation from the initial conditions to future 

times. This is accomplished by stepping through the 

simulation at discrete time intervals called timesteps. Two 

first order finite difference approximations of forward and 

backward difference formulations were employed to solve 

the pressure equations explicitly and implicitly. The 

discretization involves the process of converting the 

continuous equations into linear algebraic equations using 

finite difference method. Figure 1 below shows the 

discretization steps involved in the development of the 

numerical simulators. 

 

Figure 1. Discretization Steps in the Development of the Numerical Reservoir Simulators Ertekin, 2007 [7]. 

Some of the advantages of the finite difference method as 

stated by Abbas Firoozabadi et al 2006 [8] include: 

simplicity, ease of extension from 1D to 2D and 3D, and also 

its compatibility with certain aspect of physics of two-and 

three-phase flow. However, it was pointed out that numerical 

dispersion and grid dependency are the two major 

disadvantages of this method. There are basically two types 

of finite-difference grids used in reservoir simulation: block-

centered grid and point-distributed grid. In block-centered 

grid, for a rectangular coordinate system, the grid block 

dimensions are selected first, followed by the placement of 

points in the central locations of the blocks. The distance 

between the block boundaries is the defining variable in 

space. In contrast, the grid points (or nodes) are selected first 

in the point-distributed grid Abou-Kassem et al., 2006 [9]. 

2.1. Linear Solvers in Reservoir Simulators 

The single facet of a reservoir simulator that has the 
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greatest combined influence is the technique used to solve 

the large systems of equations arising from the numerical 

approximation of the nonlinear fluid flow equations. There 

are two general methods for solving the matrix equation 

resulting from the finite difference approximation, namely 

direct methods and iterative methods. 

2.1.1. Direct Methods 

These methods transform the original equations into 

equivalent equations that can be solved more easily. Popular 

direct solution methods include Gaussian elimination, Gauss-

Jordan, and LU (Lower-Upper) decomposition. Ertekin et al. 

2007 [7] stated that a direct solver has the capability to 

produce an exact solution after a fixed number of 

computations if the computer is able to carry an infinite 

number of digits. But, because all real computers have a 

finite word length, the solution obtained through a direct 

solver will have round-off errors. The direct solver is also 

limited by its excess computer storage requirements, since it 

is necessary that both the coefficient matrix and the right-

hand vector throughout the solution process are to be stored 

2.1.2. Iterative Solution Methods 

The iterative process starts with an initial guess of the 

solution vector, and repeatedly refines the solution until a 

certain convergence criterion is reached. Popular iterative 

methods include the Jacobi iteration, Gauss-Siedel, 

successive over-relaxation (SOR), strongly implicit 

procedure (SIP), and conjugate-gradient method (CGM). But, 

in this study, the Jacobi iterative method was employed as the 

implicit equation solver. The iterative methods are generally 

slower than their direct counterparts due to the large number 

of iterations required. Also, the iterative methods do have 

significant computational advantages especially for large and 

sparsely populated coefficient matrix. However, Jaan 2006 

[10] noted that the iterative methods do not always converge 

to the desired solution 

2.2. Development of the Reservoir Numerical Simulator 

The development of the 1D explicit and implicit numerical 

reservoir simulator include the under listed steps: 

(1) Formulate the partial differential equations (PDE) of 

the model based on the oil reservoir characteristics, 

using the three basic laws governing fluid flow in 

porous media. 

(2) Divide the reservoir into grids and then discretize the 

formulated partial differential equations in both space 

and time so as to obtain linearized system of equations. 

(3) Select an appropriate ordering scheme to obtain an 

order of coefficients of the linear system of equations 

and then compute the pressure per grid block of the 

reservoir. 

(4) Write codes for the system of equations using Matlab 

programming environment. 

(5) Finally validate the numerical simulator using material 

balance method 

2.3. Mathematical Model 

The reservoir characteristics are expressed in term of the 

set of partial differential equations (PDEs) together with the 

appropriate initial and boundary conditions that approximate 

the fluid flow behaviour of the reservoir. There are basically 

three main laws which govern isothermal reservoir 

simulation: 

(1) The law of mass conservation 

(2) Darcy’s law (transport equation), and 

(3) Equation of state (Phase properties such as density, 

compressibility and formation volume factor). 

2.4. Mathematical Model Description (Basic Assumption) 

The mathematical model was developed under the 

following assumptions: 

1 Homogeneous reservoir 

2 Isothermal, single-phase and slightly compressible fluid  

3 Steady state effective viscosity 

4 Uniform grid size 

5 Linear fluid flow into the wellbore 

6 No-flow reservoir boundary condition 

7 The fluid is Newtonian 

8 Capillary and gravity forces are ignored. 

9 The block-centered grid system was employed 

10 Chemical reactions are not included. 

2.5. Basic Fluid Flow Equation 

Considering the mass balance for a control volume, the 

mass conservation is given as: 

(Total mass entering the CV during ∆t) − (Total mass 

leaving the CV during ∆t) = (Net change in mass within the 

CV during ∆t).  

Since the equation constituting the mathematical model of 

the reservoir is too complex to be solved by analytical 

method, therefore, finite difference approximation is used to 

put the equation in a form that is amenable to solution by 

digital computer. The process involves spatial and time 

derivative discretization. The general PDE for a single phase 

three-dimensional flow through a porous medium may be 

written in Cartesian coordinates as expressed in Eq. (1) as: 
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From Eq. (1), a linear reservoir system is assumed in the x direction and the discretization is given by Eq. (2) as: 
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	!
!∆�
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2
"
�34
�� 	                               (2) 

Simplifying Eq. (2) by introducing transmissibility terms results into Eq. (3) as: 
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T,�"#$/%'p"#$ − p"* − T,�"+$/%'p" − p"+$* + q,-�" = .��∅�0��
!1
2
"
�34
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2.5.1. Forward-Difference Approximations for Fluid Flow Equation 

The forward difference approximation for the flow equation at a base time level to the first derivative on the right-hand side 

of Eq. (3) is expressed in Eq. (4) as: 

�34
�� ≈

3489:+348
∆� 	                                                                                           (4) 

Substituting Eq. (4) into Eq. (2) and (3) at time level t
n
 results into Eq. (5) and (6) as: 
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In terms of transmissibilities, 
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��
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2
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2.5.2. Backward-Difference Approximations for Fluid Flow Equation 

The backward-difference approximation generally is used in reservoir simulation because its use does not restrict the size of 

the timestep for stable solution. The backward difference approximation to the first derivative at the base time level is written 

in Eqs. (7) and (8) as: 

�3
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3<�89:=+3'�8*
∆� 	                                                                                    (7) 

�34
�� ≈

3489:+348
∆� 	                                                                                        (8) 

Substituting into Eq. (8) at the time level t
n+1

 results into Eqs. (9) and (10) as: 
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3. Results and Discussion 

Matlab is a high-level computer language for scientific 

computing and data visualization built around an interactive 

programming environment Ferreira, 2006. [11] The explicit 

and implicit codes developed in this paper were programmed 

in Matlab 2016 [12] environment. It is important to 

acknowledge here that all the numerical examples were taken 

from Ertekin et al. 2007. [7] 

3.1. Explicit Formulation Calculation Method 

The forward difference approximation to the fluid flow 

equation results in an explicit calculation procedure for the 

new time level pressures. Solving the forward difference Eq. 

(6) for the unknown quantity,	p";#$, yields the expression in 

Eq. (11) as: 

p";#$ = p"; + ���
!1∆���∅�0 
" q,-�" + ���
!1∆���∅�0 
" × @T,�49:/>; p"#$; �T,�49:/>; + T,�4A:/>; 
 p"; + T,�4A:/>; p"+$; B	        (11) 

All the terms on the right hand side of Eq. (11) are known 

because all pressures appearing on this side are at the known 

(old) time level, n. In this equation, the pressures at the new 

time level can be obtained explicitly by the use of these 

known pressures. The Matlab code written for Eq. (11) is 

given in Appendix A. A graphical user interface (GUI) that 

accepts input data from the user was designed with Matlab 

for the explicit formulation finite difference simulator in this 

study. The input data required from the user are reservoir and 

production parameters: (1) Reservoir description data such as 

overall geometry, grid size specification, permeability and 

porosity for each gridblock. (2) Fluid PVT properties, such as 

oil formation volume factor and viscosity, and (3) 

Specification of well location and production rate. Figure 2 

shows the GUI that was created for the explicit simulator. 
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Figure 2. Explicit Numerical Reservoir Simulator Graphical User Interface. 

3.2. Example Application of Explicit Scheme with 

Neumann Boundary Condition 

For the 1D block-centered grids shown in Fig. 3 pressure 

distribution during the first year of production was 

determined. The initial reservoir pressure is 6000 psia. The 

rock and fluid properties for this problem are ∆x=1000 ft, 

∆y=1000 ft, ∆z=75 ft, Bl=1 RB/STB, ct=3.5 x 10
-6

 psi
-1

, 

kx=15 mD, ɸ=0.18, µl=10 cp, and B
o

l=1 RB/STB. Assuming 

a timestep size of ∆t=10 days. Additionally, assuming that Bl 

acts as a constant within the pressure range of interest and no 

flow boundary condition where the flux vanishes everywhere 

on the boundary. 

 

Figure 3. Porous Medium and Block-Centered Grid System Ertekin et al., 2007 [7]. 

3.3. Explicit Simulation Results 

Table 1 and Fig. 4 plots indicate the results that was generated from each timestep after running the simulator. 

Table 1. Timestep Results of Explicit Simulator Calculations. 

EXPLICIT SIMULATION STUDY RESULTS (∆t=10 DAYS) 

Time PRESSURE(PSIA) 

(days) Block 1 Block 2 Block 3 Block 4 Block 5 

0 6000.00 6000.00 6000.00 6000.00 6000.00 

10 6000.00 6000.00 6000.00 5821.75 6000.00 
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EXPLICIT SIMULATION STUDY RESULTS (∆t=10 DAYS) 

Time PRESSURE(PSIA) 

(days) Block 1 Block 2 Block 3 Block 4 Block 5 

20 6000.00 6000.00 5973.14 5697.21 5973.14 

30 6000.00 5995.95 5935.61 5602.11 5931.56 

40 5999.39 5987.47 5894.45 5523.75 5881.92 

50 5997.59 5975.25 5852.61 5455.33 5827.95 

60 5994.23 5960.14 5811.22 5393.09 5771.80 

70 5989.09 5942.83 5770.66 5334.91 5714.74 

80 5982.12 5923.86 5730.94 5279.55 5657.50 

90 5973.34 5903.57 5691.99 5226.26 5600.55 

100 5962.83 5882.20 5653.70 5174.59 5544.15 

110 5950.68 5859.92 5615.93 5124.21 5488.46 

120 5937.00 5836.83 5578.60 5074.94 5433.58 

130 5921.91 5813.01 5541.62 5026.62 5379.54 

140 5905.50 5788.53 5504.91 4979.15 5326.36 

150 5887.87 5763.42 5468.42 4932.44 5274.04 

160 5869.12 5737.72 5432.11 4886.42 5222.56 

170 5849.32 5711.47 5395.93 4841.05 5171.91 

180 5828.55 5684.70 5359.87 4796.26 5122.06 

190 5806.87 5657.43 5323.89 4752.03 5072.96 

200 5784.35 5629.69 5287.98 4708.30 5024.60 

210 5761.05 5601.50 5252.12 4665.06 4976.94 

220 5737.01 5572.90 5216.30 4622.26 4929.95 

230 5712.28 5543.89 5180.52 4579.88 4883.58 

240 5686.90 5514.51 5144.77 4537.90 4837.82 

250 5660.93 5484.77 5109.04 4496.28 4792.63 

260 5634.38 5454.70 5073.32 4455.02 4747.97 

270 5607.31 5424.31 5037.62 4414.08 4703.83 

280 5579.73 5393.62 5001.93 4373.44 4660.17 

290 5551.69 5362.64 4966.25 4333.10 4616.96 

300 5523.20 5331.40 4930.57 4293.02 4574.19 

310 5494.30 5299.90 4894.90 4253.20 4531.82 

320 5465.01 5268.17 4859.23 4213.63 4489.84 

330 5435.35 5236.21 4823.57 4174.28 4448.22 

340 5405.34 5204.04 4787.91 4135.14 4406.94 

350 5375.01 5171.67 4752.25 4096.20 4365.98 

360 5344.37 5139.11 4716.59 4057.46 4325.33 
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Figure 4. Explicit Pressure against Time Plot for Gridblocks. 

3.4. Discussion of Explicit Simulation Results 

The first point is that no-flow boundary conditions can be 

modeled by assigning zero transmissibility at the edges of the 

porous medium. The second point is that the pressures 

calculated at identical times are different, depending on the 

timestep size used in the calculation as shown in Table 1. 

This is indicative of the approximate nature of the finite 

difference technique. There is no reason why these 

approximations should give the same result for different 

timestep sizes. Because the approximation is first order, the 

smaller timestep sizes generally give more precise results 

when compared with the solution of the original PDE. 

Another point illustrated by this example is that the pressure 

transient created by fluid withdrawal from the well in 

Gridblock 4 can only move one cell per timestep as shown in 

Table 1. This is a property of the explicit method only. For a 

timestep size of 10 days, it takes the pressure transient 40 

days to reach the left boundary, while for a timestep size of 

30 days; it would have taken the pressure transient 120 days 

to reach the boundary. That is, four timesteps are always 

needed for the pressure transient to reach the left boundary in 

this example calculation (Table 1). The difference that will 

occur when a constant pressure (pressure-specified boundary) 

is specified at either side of the gridblock is that the pressure 

distribution at the end of the first year of production (360 

days) in the gridblock containing the well will be greater than 

the case of no-flow boundary condition. This is because the 

pressure that will be specified at either boundary of the 

gridblock provides support to the gridblock containing the 

well. This type of boundary condition occurs in a reservoir 

that is constantly charged by strong water influx, so that the 

pressure at the interface between the hydrocarbon reservoir 

and the supporting aquifer remains constant which is known 

as Dirichlet problem). The method of implementing the 

specified boundary pressure is the least rigorous method 

available for block centered grid systems. This is because the 

pressure on the boundary is shifted from the gridblock edge 

to the block center (i.e ∆x/2 away from the reservoir 

boundary). Although, this method is the least accurate 

method of implementing boundaries with specified pressure, 

it is the most practical method of implementation. As a result, 

it is the most common method of implementing boundaries 

with specified pressure in reservoir simulators. One method 

to improve the description of a constant-pressure boundary is 

to use a more refined grid in the vicinity of the pressure-

specified boundary. In general, this method can improve the 

accuracy of modeling boundaries with specified pressure in 

block-centered grids. For the explicit solution technique, this 

may lead to stability problems. This erratic behavior is 

caused by the conditional stability nature of the explicit 

forward difference scheme formulation. The forward 

difference equation is conditionally stable, because under 

certain conditions, the errors in the solution tend to go to zero 

during the subsequent timestep calculations. Meanwhile, 

under other conditions, these same errors propagate 

uncontrollably during subsequent timestep calculations. This 

is a serious limitation of the forward difference formulation. 

In summary, the implementation of the explicit formulation 

technique involves pressures at the old-time-level only. At 

this time level, these quantities are known and can be used in 

an explicit calculation procedure to advance the simulation in 

time.  

3.5. Discussion of Analytical Results 

All that is necessary is to devise some means of averaging 

individual well pressure declines to determine a uniform 

trend for the reservoir as a whole. The average pressure 

decline can be determined by the volume weighting of 

pressures within the drainage area of the well. If pj and Vj 

represent the pressure and volume drained by the j
th

 wel1. 

Then for an explicit method of production in gridblocks, the 

average reservoir pressure is given by Eq. (12) as: 
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PD = ∑ 3F�FF
∑ �FF

	                               (12) 

The obtained average reservoir pressure using Eq. (12) for 

an explicit numerical computation is given as: 

PD = 4846.753806	psia 

Material balance method in Eq. (13) was used to find the 

total cumulative oil production for a one year production 

period using the explicit numerical simulator results as: 

q � RS
� 	                                     (13) 

Np=150x360 

 =54,000 STB 

Furthermore, the recovery factor at the bubble point 

pressure is computed using Eq. (14) as: 

R � RS
R U�� �


�4

�� C�∆P	                          (14) 

R � 1
1 ? 3.5 ? 10

+X ? '6000 ) 4,057.40* 
R=0.0067991 

The estimated recovery factor at the bubble point pressure 

is 0.0067991 of the original oil in place. This low recovery 

factor is a characteristic of an expansion-drive reservoir 

which has the least efficient recovery mechanism Dake, 1998 

[13]; Fanchi, 2008 [14]; Tarek, 2006 [15]. A sensitivity study 

was also conducted on the simulator developed to observe 

the effect of porosity on average reservoir pressure as shown 

in Fig. 5. The sensitivity analysis performed to investigate 

the effect of porosity on average reservoir pressure shows 

that the average reservoir pressure decline as the porosity 

decreases from 30% to 10%. This indicates that the time 

taken to reach the bubble point pressure decreases as the 

porosity decreases. 

 

Figure 5. Effect of porosity on average reservoir pressure. 

3.6. Implicit Calculation Method 

The backward difference approximation to the slightly compressible flow equation results in an implicit calculation 

procedure for the new-time-level pressures. Rearranging Eq. (10) yields Eq. (15) as: 

T,�"#$/%p"#$;#$ ) Z. ��∅�0��
!1∆�
2
"
� T,�"#:> � T,�"+:>[ p"

;#$ � T,�"+:> ? p"+$
;#$ � ) Zq,-�" � . ��∅�0��
!1∆�

2
"
p";[	                  (15) 

where the quantities	p"#$;#$ ,	p";#$and p"+$;#$  are all unknowns. 

Unlike the explicit formulation, Eq. (15) cannot be solved 

explicitly for p";#$  because both p"#$;#$  and p"+$;#$  are also 

unknown. As a result, Eq. (15) written for all gridblocks and 

unknowns must be solved simultaneously or through iterative 

algorithms. The Matlab code written for Eq. (15) is given in 

Appendix B. The implicit numerical reservoir simulator 

interface design is shown in Fig. 6. 
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Figure 6. Implicit Simulator Graphical User Interface. 

3.6.1. Example Application of Neumann Boundary Condition 

The same problem described for the explicit method was used for the implicit backward difference formulation. Herein, 

assuming a timestep size of ∆t = 15 days 

3.6.2. Implicit Simulation Results 

Table 2. Implicit Simulation Pressure Results. 

IMPLICIT SIMULATION STUDY RESULTS (∆t=15 DAYS) 

Time PRESSURE(PSIA) 

(days) Block 1 Block 2 Block 3 Block 4 Block 5 

0 6000.00 6000.00 6000.00 6000.00 6000.00 

15 5999.08 5995.02 5968.94 5805.44 5964.13 

30 5996.29 5983.92 5922.46 5655.36 5907.21 

45 5990.90 5967.09 5868.77 5532.90 5838.20 

60 5982.51 5945.36 5812.07 5427.97 5762.57 

75 5970.91 5919.62 5754.47 5334.45 5683.64 

90 5956.11 5890.64 5696.92 5248.60 5603.44 

105 5938.21 5859.00 5639.83 5168.10 5523.18 

120 5917.37 5825.18 5583.33 5091.48 5443.60 

135 5893.80 5789.50 5527.39 5017.78 5365.09 

150 5867.70 5752.25 5471.95 4946.39 5287.90 

165 5839.29 5713.60 5416.93 4876.86 5212.12 

180 5808.77 5673.73 5362.26 4808.89 5137.78 

195 5776.32 5632.74 5307.85 4742.26 5064.87 

210 5742.11 5590.76 5253.66 4676.81 4993.33 

225 5706.30 5547.86 5199.64 4612.39 4923.10 

240 5669.03 5504.13 5145.74 4548.90 4854.11 

255 5630.42 5459.63 5091.94 4486.24 4786.29 

270 5590.60 5414.42 5038.22 4424.34 4719.56 

285 5549.67 5368.56 4984.56 4363.13 4653.85 

300 5507.71 5322.10 4930.94 4302.55 4589.09 

315 5464.83 5275.09 4877.35 4242.54 4525.20 

330 5421.09 5227.56 4823.79 4183.06 4462.12 

345 5376.56 5179.57 4770.25 4124.06 4399.80 

360 5331.32 5131.15 4716.73 4065.50 4338.17 
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Figure 7. Implicit Pressure against Time Plot for Gridblocks. 

3.6.3. Discussion of Implicit Simulation Results 

The example calculation illustrates that the amount of 

computation required for the implicit solution procedure is 

much greater than that for the explicit solution procedure. 

This is because, at each timestep, a system of equations must 

be solved for the unknowns of the problem. In general, most 

of the computational time used in implicit simulation is in the 

solution of the linear equation. This example also illustrates 

that the reservoir pressure can move more than one gridblock 

per timestep as shown in Table 2. Herein, it has moved to the 

left boundary during the first timestep. Also, the results from 

the implicit backward difference formulation and the explicit 

forward difference formulation will not give identical results 

even when the same timestep is used. This is because of the 

approximate nature of the finite difference approach. 

Moreover, the no-flow boundary can be implemented by 

assigning zero transmissibility to the boundaries. This 

example also demonstrates that no stability problem is 

associated with the implicit formulation. This is because the 

implicit formulation is unconditionally stable. This property 

states that no conditions exist where the backward difference 

formulation exhibits unstable behavior. Although this 

statement indicates that any gridblock dimension and /or 

timestep size can be used with no stability problems, the use 

of large timestep sizes and block dimensions may result in 

unrealistic coarse approximations. This becomes apparent in 

the solution as a departure from the true physics of the 

problem. However, due to the unconditionally stable nature 

of the implicit formulation, the backward difference 

formulation is the most commonly used formulation in 

petroleum reservoir simulation Ertekin et al. 2007. [7]  

4. Conclusions 

Although, the explicit method is the least accurate method 
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of implementing boundaries with specified pressure, it is the 

most practical method of implementation. Thus, it is the most 

common method of implementing boundaries with specified 

pressure in numerical reservoir simulators. 

On the other hand, the implicit formulation method also 

demonstrates that no stability problem is encountered as 

compared to explicit formulation. This is because the implicit 

formulation is unconditionally stable. Material balance 

method was also employed to validate the reservoir simulator 

that was developed. Additionally, the 1D explicit and implicit 

finite difference numerical simulator developed for 

predicting single phase pressure distributions in a reservoir 

during production is a stepping stone towards implementing 

two or three phase multiphase flow 

Numerical methods such as finite element method, integral 

volume, finite volume method, and variational method could 

be employed for the discretization of the PDE governing the 

fluid flow process and compared to the finite difference 

method used in this study. This will accommodate both 

regular and irregular reservoir geometry. In the implicit 

method implemented in this study, it was observed that the 

number of iterations required for convergence was large. 

This may be significantly reduced by introducing 

preconditioners used to reduce the matrix condition number 

and speed up the convergence of iterative solvers in order to 

increase the convergence rate. 
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Appendix 

Appendix A: Matlab Code for Explicit Calculation Procedure 

clear all; close all; clc; clf 

% ========================================================================== 

%PROBLEM FORMULATION 

%Explicit Finite Difference Formulation 

%1D block centered grid 

%Determine the pressure distribution during first year of oil production 

  

========================================================================== 

%POROUS MEDIUM AND BLOCK CENTERED GRID SYSTEM 

% 

%                                   ^ qsc=-150STB/D 

%                                   | 

%           |-----|-----|------|------ |-------| 

%           |     |     |      |    |  |       |                                                                      

%      75ft |  o  |  o  | o    |    o  |  o    | 

%           |     |     |      |       |       | 

%           |  1  |   2 |    3 |     4 |  5    |                                             

%           |-----|-----|------|-------|-------|                                        

%        dp/dx=0   1000ft                      dp/dx=0 

========================================================================== 

%POROUS MEDIUM AND BLOCK CENTERED GRID SYSTEM 

  

%CREATE INPUT VALUES FOR RESERVOIR PROPERTIES 

x=input('Enter change in x length value:'); 

y=input('Enter change in y length value:'); 

z=input('Enter change in z length value:'); 

Bo=input('Enter initial formation volume factor:'); 

Bl=input('Enter liquid phase formation volume factor:'); 

ct=input('Enter compressibility factor:'); 

k=input('Enter permeability value:'); 

ul=input('Enter viscosity value:'); 

o=input('Enter porosity value:'); 

t=input('Enter timestep sizes:'); 

q=input('Enter reservoir flowrate:'); 

Pi=input('Enter initial pressure'); 
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%CALCULATE EXPLICIT FORMULAR PROPERTIES 

a=y*z; %Calculate the area of gridblocks.unit: ft2 

vb=x*y*z; %Calculate the volume of gridblocks.unit: ft3 

alpha=(5.615*Bl*t)/(vb*o*ct); %Calculate explicit factor 

beta=(1.127*a*k)/(ul*Bl*x); %Calculate the transmissibility of gridblocks 

ksi=beta; 

  

%SETTING INITIAL CONDITIONS 

P0=0; %For block one Pi-1=P0=1, where i=1 

P=ones(1,5)*Pi; %Pi=6000psia for Gridblocks i=1,2,3,4,5 

  

%LOOPING TO CALCULATE TIMESTEP 

%tstep=timestep 

for tstep=1:5 

    for block = 1:5 

        %BOUNDARY CONDITIONS FOR GRIDBLOCKS 

         

        alpha(1,block)=(5.615*Bl*t)/(vb*o*ct) 

        if block==1 

            ksi(1,block)=0 

        else 

            ksi(1,block)=(1.127*a*k)/(ul*Bl*x) 

        end 

        if block~=4 

            q(1,block)=0 

        else 

            q(1,block)=-150 

        end 

        if block==5 

            beta(1,block)=0 

        else 

            beta(1,block)=(1.127*a*k)/(ul*Bl*x) 

        end 

        gamma=beta+ksi; 

        %CALCULATION OF PRESSURE DISTRIBUTION IN BLOCKS AT EVERY TIMESTEP 

       if block ~=5 

            if block ==1   

P(tstep + 1,block) = P(tstep,block)+ alpha(1,block)*q(1,block)     +alpha(1,block)*(beta(1,block) *P(tstep,block+1)- ... 

gamma(1,block)*P(tstep ,block) + ksi(1,block)*P0) 

            else 

P(tstep + 1,block) = P(tstep,block)+ alpha(1,block)*q(1,block) +alpha(1,block)*(beta(1,block)*P(tstep,block+1)  - 

gamma(1,block)*P(tstep ,block) +ksi(1,block)*P(tstep ,block-1)) 

            end 

        elseif block==5  

 P(tstep + 1,block) = P(tstep,block)+ alpha(1,block)*q(1,block) +alpha(1,block)*(beta(1,block)*P(tstep,block)  - 

gamma(1,block)*P(tstep ,block) + ksi(1,block)*P(tstep ,block-1)) 

        end 

     end    

end 

 

%PLOTTING RESULTS 

 figure(1) 

 x=(0:10:360)'; 

 y=P(:,1); 

 subplot(2,2,1);     % defining 1st plotting area 

 plot(x,y,'-bo') 

 box on; 
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 title('PRODUCING WELL(GRIDBLOCK 1) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 

  

 x=(0:10:360)'; 

 y=P(:,2); 

 subplot(2,2,2);     % defining 1st plotting area 

 plot(x,y,'-bo') 

 box on; 

 title('PRODUCING WELL(GRIDBLOCK 2) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 

 

 x=(0:10:360)'; 

 y=P(:,3); 

 subplot(2,2,3);     % defining 1st plotting area 

 plot(x,y,'-bo') 

 box on; 

 title('PRODUCING WELL(GRIDBLOCK 3) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 

 

 x=(0:10:360)'; 

 y=P(:,5); 

 subplot(2,2,4);     % defining 1st plotting area 

 plot(x,y,'-bo') 

 box on; 

 title('PRODUCING WELL(GRIDBLOCK 5) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 

 

figure(2) 

 x=(0:10:360)'; 

 y=P(:,4); 

 plot(x,y,'-bo') 

 box on; 

 title('PRODUCING WELL(GRIDBLOCK 4) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 

 

Appendix B: Matlab Code for Implicit Calculation Procedure 

clear all; close all; clc; clf 

========================================================================== 

%PROBLEM FORMULATION 

%Explicit Finite Difference Formulation 

%1D block centered grid 

%Determine the pressure distribution during first year of oil production 

  

========================================================================== 

%POROUS MEDIUM AND BLOCK CENTERED GRID SYSTEM 

% 
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%                                   ^ qsc=-150STB/D 

%                                   | 

%           |-----|-----|------|------ |-------| 

%           |     |     |      |    |  |       |                                                                      

%      75ft |  o  |  o  | o    |    o  |  o    | 

%           |     |     |      |       |       | 

%           |  1  |   2 |    3 |     4 |  5    |                                             

%           |-----|-----|------|-------|-------|                                        

%        dp/dx=0   1000ft                      dp/dx=0 

========================================================================== 

%POROUS MEDIUM AND BLOCK CENTERED GRID SYSTEM 

 

%CREATE INPUT VALUES FOR RESERVOIR PROPERTIES 

x=input('Enter change in x length value:'); 

y=input('Enter change in y length value:'); 

z=input('Enter change in z length value:'); 

Bo=input('Enter initial formation volume factor:'); 

Bl=input('Enter liquid phase formation volume factor:'); 

ct=input('Enter compressibility factor:'); 

k=input('Enter permeability value:'); 

ul=input('Enter viscosity value:'); 

o=input('Enter porosity value:'); 

t=input('Enter timestep sizes:'); 

q=input('Enter reservoir flowrate:'); 

Pi=input('Enter initial pressure'); 

      

%CALCULATE EXPLICIT FORMULAR PROPERTIES 

a=y*z; %Calculate the area of gridblocks.unit: ft2 

vb=x*y*z; %Calculate the volume of gridblocks.unit: ft3 

alpha=(5.615*Bl*t)/(vb*o*ct); %Calculate explicit factor 

beta=(1.127*a*k)/(ul*Bl*x); %Calculate the transmissibility of gridblocks 

ksi=beta; 

 

%CALCULATION OF PARAMETERS 

Ax=y*z 

Vb=x*y*z 

T=(beta_c*Ax*kx)/(ul*Bl*x); 

rows = 5; 

cols = 5; 

P = zeros(24,5); 

P =ones(1,5)*6000; 

Mat_of_Coeff = zeros(rows,cols); 

Rhs = zeros(5,1); 

coeff  = 1; 

for block = 1:5 

    G(1,block) = (Vb*phi*ct)/(alpha_c*Bl*t) 

     

    if block==1 

        ksi(1,block)=0 

    else   

        ksi(1,block)=0.1268 

    end 

    if block~=4 

        q(1,block)=0 

    else 

        q(1,block)=-150 

    end 



 Earth Sciences 2018; 7(6): 242-259 256 

 

    if block==5 

        beta(1,block)=0 

    else 

        beta(1,block)=0.1268 

    end 

    gamma=beta+ksi 

    if(block == 1) 

        Mat_of_Coeff(block, coeff+1)   = beta(1,block) 

        Mat_of_Coeff(block, coeff) = - G(1,block) - gamma(1,block) 

        Mat_of_Coeff(block, coeff+2) = ksi(1,block) 

    elseif(block ==2) 

        Mat_of_Coeff(block, coeff)   = beta(1,block) 

        Mat_of_Coeff(block, coeff+1) = - G(1,block) - gamma(1,block) 

        Mat_of_Coeff(block, coeff+2) = ksi(1,block) 

    elseif(block>2 && block <5) 

        Mat_of_Coeff(block, block-1) = beta(1,block) 

        Mat_of_Coeff(block, block)   = - G(1,block) - gamma(1,block) 

        Mat_of_Coeff(block, block+1) = ksi(1,block) 

    elseif(block ==5) 

        Mat_of_Coeff(block, block-2)   = beta(1,block) 

        Mat_of_Coeff(block, block) = - G(1,block) - gamma(1,block) 

        Mat_of_Coeff(block, block-1) = ksi(1,block) 

    end 

end 

   

for tstep= 1:24 

    if(tstep ==1) 

        for block = 1:5 

            Rhs(block) = -(q(1,block) +Pi*G(1,block)) 

        end 

        P1 = (Mat_of_Coeff\Rhs)' 

        for(block =1:5) 

            P(tstep+1,block) = P1(block) 

        end 

    elseif(tstep >=2 && tstep<=24) 

        for block = 1:5 

            Rhs(block) = -(q(1,block) +P1(block)*G(1,block)) 

        end 

        P1 = (Mat_of_Coeff\Rhs)' 

        for(block =1:5) 

            P(tstep+1,block) = P1(block) 

        end 

end 

 

JACOBI ITERATIVE SOLUTION METHOD 

A=Mat_of_Coeff 

b= Rhs 

% Set initial value of x to zero column vector  

x0=zeros(1,5) 

% Set Maximum iteration number k_max 

k_max=1000; 

% Set the convergence control parameter erp 

erp=0.0001; 

% Show the q matrix 

q=diag(diag(A)) 

% loop for iterations 

for k=1:k_max 
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   for i=1:5 

     s=0.0 

     for j=1:5 

      if j==i  

            continue 

        else     

            s=s+A(i,j)*x0(j) 

        end 

    end 

    x1(i)=(b(i)-s)/A(i,i) 

   end 

   if norm(x1-x0)<erp 

      break 

   else 

   x0=x1    

  end 

end 

% show the final solution 

x=x1' 

% show the total iteration number 

n_iteration=k  

        for(block =1:5) 

            P(tstep+1,block) = x(block) 

        end 

    end 

end 

%PLOTTING RESULTS 

 figure(1) 

 x=(0:15:360)'; 

 y=P(:,1); 

 subplot(2,2,1);     % defining 1st plotting area 

 plot(x,y,'-bo') 

 box on; 

 title('PRODUCING WELL(GRIDBLOCK 1) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 

 

x=(0:15:360)'; 

 y=P(:,2); 

 subplot(2,2,2);     % defining 1st plotting area 

 plot(x,y,'-bo') 

 box on; 

 title('PRODUCING WELL(GRIDBLOCK 2) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 

 

 x=(0:15:360)'; 

 y=P(:,3); 

 subplot(2,2,3);     % defining 1st plotting area 

 plot(x,y,'-bo') 

 box on; 

 title('PRODUCING WELL(GRIDBLOCK 3) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 
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 x=(0:15:360)'; 

 y=P(:,5); 

 subplot(2,2,4);     % defining 1st plotting area 

 plot(x,y,'-bo') 

 box on; 

 title('PRODUCING WELL(GRIDBLOCK 5) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 

 

figure(2) 

 x=(0:15:360)'; 

 y=P(:,4); 

 plot(x,y,'-bo') 

 box on; 

 title('PRODUCING WELL(GRIDBLOCK 4) PRESSURE VRS TIME'); 

 xlabel('TIME (DAYS)'); 

 ylabel('RESERVOIR PRESSURE (PSIA)'); 

 grid on 

 

 

NOMENCLATURE 

A = Cross-sectional area normal in the direction of flow, (ft2) 

Bo = Oil formation volume factor (rb⁄stb) 

βC = Unit conversion factor for the permeability coefficient = 1.127, 

∆t = Time step (day) 

∆x = \]^_`ℎ bc d _efg hibjk (c`) 
∆y = lfg`ℎ bc d _efg hibjk (c`) 
∆z = m]f_ℎ` bc d _efg hibjk (c`) 
µ = Oil viscosity (cp) 

Gi,j,k = Constant part of the transmissibility, (stb/day-psi) 

H = Formation thickness (ft) 

K = Rock permeability (d) 

Kx = Formation permeability in x-direction (d or md) 

Ky = Formation permeability in y-direction (d or md) 

Kz = Formation permeability in z-direction (d or md) 

Lx = Formation length in x-direction (ft) 

Ly = Formation length in y-direction (ft) 

ɸ = formation porosity (fraction) 

P = Reservoir pressure (psia) 

q = Volumetric flow rate of production (stb⁄D) 

qi,j,k = Oil flow rate from well in cell i,j,k (stb/day) 

t = Time step (day) 

T = Transmissibility, (stb/day-psi) 

Ti,j,k+1/2 = Transmissibility along z-direction between cell (i,j,k) and cell (i,j,k+1/2), (stb/d-psi) 

Ti,j+1/2,k = Transmissibility along y-direction between cell (i,j,k) and cell (i,j+1/2,k), (stb/d-psi) 

Ti+1/2,j,k = Transmissibility along x-direction between cell (i,j,k) and cell (i+1/2,j,k), (stb/d-psi) 

Vb = Volume at reservoir condition (rb) 

x = x-direction 

y = y-direction 

z = z-direction 

nx = total number of grid cells in the x-direction 

ny = total number of grid cells in the y-direction 

nz = total number of grid cells in the z-direction 

Z = Elevation (ft) 

αc = Volume conversion factor (to field unit) = 5.615, 
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γ = Fluid gravity (psi⁄ft) 

ρ = Density at reservoir condition 

o = Oil  

n = Previous time step 

n+1 = Next time step 
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