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Abstract: Applied the chaotic time-series optimization algorithm to solve hydrogeological parameters through analysis the 

pumping test data of the first type leakage aquifer, then explored the influence of the initial value of aquifer parameters and other 

factors on the convergence and results of the algorithm. The results shown that: ①chaotic time-series optimization algorithm 

could be effectively applied to the calculation problem of aquifer parameters; ②the initial value of the coefficient of storage and 

conductivity don’t have too much obvious effect on the search and results of the algorithm; ③The upper limit of algorithm had 

no obvious effect on the search ability but reduce the accuracy of results. Compared with other methods, the chaotic optimization 

method had such advantages as simple in principle of algorithm, easy to make program and to conduct, and the precision of 

aquifer parameters calculated was not affected by artificial subjective factors. 
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1. Introduction 

In the process of determining the hydrogeological parameters 

of aquifer, the standard curve comparison method, inflection 

point method, tangent method [1] had got a very good 

application, but in practice, because of the difference between 

the human and the mapping, the results can be differ in 

thousands of ways. Against this, WANG Yuan-hui [2], SHI 

Zhi-yuan [3], LUO Jun [4], et al., applied the chaos particle 

swarm algorithm, genetic algorithm and bee colony algorithm 

to analysis of pumping test data and determine the parameters 

of aquifer respectively, and got a good result. The most 

successful was the utilized of chaotic time-series optimization 

algorithm to on Theis well flow
 
[5]. In this paper, the algorithm 

of chaos time-series optimization in determining the parameters 

of aquifer was proposed, the results were reliable contrasted 

with the results of Theis wiring method [1] and Sushil K.s.
 
[6] 

method. For the chaotic time-series optimization algorithm was 

a direct random search, and the characteristics of the objective 

function itself was less, so it had a wide range of applications 

[5]. In addition, because the search process of the chaotic 

time-series optimization algorithm was accomplished by 

writing program, involved little human disturbance factors, so 

the results of the calculation were very high objectivity, stability 

and timeliness, compared with the traditional wiring method, it 

had a great advantage. 

However, literature [5] only analyze the application in 

single-well without leakage, for the application in multi-well 

condition with leakage aquifer was not described. For this 

reason, the author analyze the first type leakage aquifer of 

multi-well pumping test data and determined the aquifer 

parameters, to study the further application of chaos 

time-series optimization algorithm in determining the 

parameters of aquifer. 

2. Ideas of Algorithm 

Based on the chaotic dynamics the search process [7] can be 

divided into the following two basic processes: 

First, a specific iteration method was determined to obtain 

an ergodic orbit, which could be used to investigate the whole 

solution space. Search process of the algorithm was carried 

out in this space, the process would be ended when it meeting 

the certain conditions, and we considered the optimal solution 

in this search process was close to the optimal solution of the 

problem, and this optimal solution was used as the starting 

point of the second time search. This process was called a 

rough search process. Then, a small amplitude perturbation 
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was added to the results obtained from the above to conduct 

further search in the local area, finally reached the termination 

criterion of the algorithm. This process was called the fine 

search process. 

Based on the above ideas, Li Bing et al. (1997) used the 

carrier method transformed the chaotic variables generated by 

the Logistic map into the optimization variables, at the same 

time, the ergodicity range of the chaotic motion was converted 

to the optimization variable
 
[8] . Next, we used the chaotic 

variable to carry on the twice searchers of the aquifer 

parameters. Its concrete steps are as follows
 
[8]: 

Step 1: Let 1, 1k k ′= = , for the logistic mapping, the nx

in the equation ( )1
4 1

n n n
x x x+ = − were endowed with 

i-initial values with small differences, therefor we can got i-

, 1i nx + with different trajectories. There, i is number of 

parameters to be found; 1n + is length of chaotic time-series. 

Step 2:Through the equation of , 1 , 1i n i i i nx c d x+ +′ = + , the 

chaos variable , 1i nx + was transformed into the optimization 

variables , 1i nx +′ by carrier method. There, the ,i ic d  is a 

constant, these two parameters are used to scale the 

optimization variables. 

Step 3: Using the first iteration of the chaotic variable, let

( ) , 1i i n
x k x +′= , to calculate the corresponding function 

optimization value ( )f k . Let ( ) ( )0 , 0
i i

x x f f∗ ∗= = . If 

( )f k f
∗≤  then ( ) ( ),

i i
f f k x x k∗ ∗= = ; else, abandoned

( )ix k . Let 1k k= + . 

Step 4: If the f ∗
always maintain a certain value or k is 

greater than the certain value 1L (the rough search times) after 

several searches in step 3, we considered the rough search 

stage was end, the algorithm can enter the fine search stage, 

else, return to step 3. 

Step 5: After the step 4 the second carrier was executed in 

accordance with the equation , 1 , 1i n i i i nx x a x∗
+ +′′ = + , there, ia

is a constant of adjusting to make , 1i i na x + to be a small 

amplitude chaos variable. 

Step 6: Using the chaotic variables got by the second carrier, 

the iterated search would be continued, let ( ) , 1i i nx k x +′ ′′= , to 

calculate the corresponding function optimization value

( )f k′ , If ( )f k f ∗′ ≤  then ( ) ( ),
i i

f f k x x k∗ ∗′ ′= = ; 

else, abandoned ( )ix k′ . Let 1k k′ ′= + . If the termination 

condition is satisfied, the optimal solution x ∗ is output; 

Otherwise, return to step 5, meanwhile, let 2 maxL k ′= , which 

is used as the number of fine search. 

3. Determination of the Objective 

Function 

The analytical solution to the well flow problem in the first 

type leakage aquifer is [9]: 

( )
2

241
, ,

4 4

r
y

B y

u

Q Q r
s r t e dy F u

T y T Bπ π

 
− + ∞  
   = =  

 
∫      (1) 

There: s is the aquifer drawdown, [L]; Q is the pumping 

flow, [L
3
·T

-1
]; T is the hydraulic conductivity, [L

2
·T

-1
]; r is 

the distance between observation wells and pumping well, 

[L]; 1 B is the leakage supply factor, [L
-1

]. 

The function F was calculated in the method in literature 

[10], while the approximate method in literature [11, 12] is a 

corking way to calculate the part of Theis well flow in 

function F . The pre-estimate parameters must be used to 

make the function of the formula (2) to achieve a minimum 

value when the chaotic time-series optimization algorithm 

was applied. That is to say the objective function is: 

( ) ( )2
0

1

1
min

N
c

j j

j

f x s s
N =

= − ⇒∑          (2) 

There, the
0

js is the observed drawdown at j-th moment, [L]; 

c

js is the calculated drawdown at j-th moment, [L]; j is the 

parameters vector to be estimated; 1,2,3, ,j N= ⋯ is the 

serial number of the observation time of the drawdown 

during the pumping test. 

4. Example 

4.1. Data Source 

We select three observation wells data in literature [13] to 

verify the application of chaotic time-series optimization 

algorithm in the first type leakage aquifer. Owing to the 

author selected the data which had a good correlation to 

calculated the parameters by Hantush approximate 

calculation method, namely, 17 observation data was chosen 

during 160-th min to 840-th min in observation well 1, 9 data 

during 227-th min to 900-th min in well 2, 7 data in well 3 

during 363-th min to 850-th min. So we select the same data 

when we use the chaotic time-series optimization algorithm. 

Table 1. Initial values of different parameters in different observation wells. 

Observatio

n well 

Storage 

coefficient 

Hydraulic 

conductivity 
leakage factor 

Convergence value Rough search 

times 

Time-series 

length Rough search Fine search 

Well 1 0-0.015 0.4-1.99 15800-16000 0.0002251 0.000225 5 100 

Well 2 0-0.015 0.4-2.11 15800-16000 0.000258 0.000257 20 400 

Well 3 0-0.015 0.4-1.99 15800-16000 0.000051 0.00005 2 400 
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4.2. Results Contrast 

The initial value of parameters of each observation wells 

in table 1 was introduced into the program, then the search 

results would be shown in table 2, the whole calculation 

process was accomplished with Visual Basic language. 

Table 2. Comparison of results with different methods. 

Method 
Storage 

coefficient 

Hydraulic 

conductivity 

leakage 

factor 

Hantush approximate 

calculation method 
0.000092 0.762 15900 

Chaotic time-series 

optimization algorithm 

0.000102 0.723 17557 

Relative error (%) 10.9 5.1 10.4 

As shown in Table 2, the calculated results was quite close 

between chaotic time-series optimization algorithm and 

Hantush approximate calculation method. The maximum 

relative error of the calculated results was 10.9%, the results 

of water conductivity are particularly accurate which relative 

error was 5.1%. 

Compared the drawdown results calculated by chaotic 

time-series optimization algorithm whose parameters were 

based on table 2 with the actual observed values, in addition 

to some individual points relative error with large deviation, 

the remaining errors were all within ±2%. So the results 

obtained by the optimization algorithm of chaotic time-series 

were well simulated the drawdown of the three wells which 

was shown in figure 1. 
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Figure 1. The comparison between the results of Chaotic Time-Series 

Optimization Algorithm and actual values. 

5. Control of Algorithm Parameters 

5.1. Effect of Convergence Value 

Through a lot of calculation results, it was found that the 

degree of the convergence value directly affects the times of 

coarse search and fine search in the program, especially for the 

rough search. With the first observation wells as the case, the 

relationship between the convergence value and the search 

times was shown in table 3 when the aquifer parameters were 

taken as the numerical values in table 1, the convergence of 

fine search was 0.0002251, the times of coarse search is 

limited to 100, the time-series length was 500. 

Table 3. The relationship between convergence value and the times of 

search. 

Rough search convergence Rough search times Fine search times 

0.00074 207 129 

0.00064 177 105 

0.00044 149 69 

0.000074 102 9 

0.000044 100 6 

As shown in table 3, the convergence value of rough 

search has an osculating relationship with the times of rough 

search. When the convergence value of the coarse search was 

taken between 0.0005 and 0.00028, the times of coarse 

search had a little change, far less than the number of limited 

search, just changed from 1 to 19. However, when the 

convergence value of coarse search was close to the 

convergence of fine search, the times of rough search had a 

great change. This phenomenon was most obvious in the last 

two sets of data, the times of coarse search had changed from 

60 to 100 while the convergence value of the coarse search 

just changed 0.000026899. In general, the times of rough 

search will increase with the decrease of convergence value. 

It's important to recognize that, this regularity was apparent 

when these two convergence values were close, but, when 

these two values were too close , the coarse will finish the 
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search within the limited times, the times of rough search 

will have the same variation law with the convergence value. 

So, in the algorithm the difference between the two values 

cannot be too small. 

5.2. Effect of Chaotic Time-Series Length 

The length of chaotic time-series was achieved by Logistic 

iteration. The size of it actually reflects the degree of the state 

space. The length of the sequence was longer, the range of 

search was greater, the more full, and the more difficult to 

fall into local extremum. Theoretically speaking, the search 

accuracy would reach the highest when the time-series length 

was infinite. But in practical application it was bound to 

increase the search time, and also not realistic. To this end, 

we still use the observation well 1 as an example, the length 

of the chaotic time-series was selected from the 8 sets of data 

between 50 and 1000. The search results were shown in 

Table 4. 

Table 4. The fine search times under different length of time-series and 

coarse search times. 

length of 

time-series 

coarse search times 

2 5 10 20 30 50 100 

50 5 7 4 3 4 5 8 

100 5 9 7 7 4 5 5 

200 6 2 5 2 4 4 6 

400 4 2 2 2 2 4 3 

500 4 2 2 2 2 5 3 

600 4 2 2 2 2 4 3 

800 3 2 2 2 2 4 3 

1000 3 2 2 2 2 5 2 

As can be seen in Table 4, under the same coarse search 

times, although the times of fine search was fluctuating, it 

still presented a clear downward trend with the increase of 

the length of chaotic time-series. This is due to the reason 

that the longer the length of the time-series was, the more 

fully the search was, and the results were more close to the 

real values of the parameters. However, the degree of the 

search had been sufficient when the length was over 400, and 

this change was no longer obvious. Combining with the 

results of the other two observation wells, the sequence 

length was limited between 100 and 600 was more suitable. 

5.3. Control of Rough Search Times 

The coarse search process was achieved by the iterative 

procedure of step 3. As mentioned above, when the length of 

chaotic time-series we got was long enough, the greater the 

times of coarse search was, the search in the state space was 

also more fully, and it was not easy to fall into local 

extremum. From table 4, with the increase of the times of 

rough search, the times of fine search will gradually became 

smaller and tend to be stable. In the rough search stage, we 

aimed to find the optimal solution of the problem, and ensure 

that the algorithm does not fall into the local extremum, so it 

will not require a large times of rough search, since such 

search in addition to increase computing time had not too 

much impact of fine search. So, for the algorithm in this 

paper, the times of coarse search between 2 and 20 was more 

appropriate. 

5.4. Influence of Initial Parameters 

The traditional gradient search algorithm used before 

would cause the search does not converge or the results 

were not unique when the initial value of the parameters to 

be estimated was not appropriate in solving the problem of 

nonlinear function optimization[8]. In order to study the 

influence of initial value range of parameters to be 

estimated in chaos time-series optimization algorithm to 

search ability and search results, we first define the initial 

value of storage coefficient and leakage factor was 

consistent with the above, the minimum water conductivity 

was 0.4 and remain constant, the ceiling value was 

composed of 12 sets of data which was the numerical value 

between 2 and 5000 times of 1.99. The results of the 

calculation of fine search times and water conductivity were 

shown in Table 5 and table 6 respectively. 

Table 5. The relationship between fine search times and the initial value of 

conductivity. 

Multiple of 

hydraulic 

conductivity 

T/times 

Rough search times: 2 Rough search times: 5 

Time-series 

length: 200 

Time-series 

length: 500 

Time-series 

length: 200 

Time-series 

length: 500 

2 5 5 5 3 

5 6 13 10 8 

10 5 5 9 8 

20 9 10 11 9 

50 3 4 11 5 

100 5 4 13 11 

200 5 4 10 11 

500 8 4 8 11 

1000 8 4 10 6 

2000 7 4 11 5 

3000 7 5 10 5 

5000 8 3 11 6 

Table 5 shown that, no matter in what kind of combination 

of coarse search times and the time-series length, along with 

the increase of the hydraulic conductivity, although the 

number of the corresponding fine search times had some 

fluctuation there is a clear trend of increasing when the 

coefficient T of the water is 2 to 5000 times. When the coarse 

search number is 2 and the sequence length was 5, the times 

of fine search had no obvious change after the hydraulic 

conductivity was 50 times of 1.99. But to the general trend, 

fine search times increased with the increasing of hydraulic 

conductivity. On the other hand, under the same rough search 

times, the fine search times was smaller in the time-series 

length of 500 than that in 200. This also proved the 

applicability of the relationship between the fine search times 

and the length of chaotic time-series. 
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Table 6. The relationship between search results and the initial value of 

conductivity. 

Multiple of 

hydraulic 

conductivity 

T/times 

Rough search times: 2 Rough search times: 5 

Time-series 

length: 200 

Time-series 

length: 500 

Time-series 

length: 200 

Time-series 

length: 500 

2 0.739 0.733 0.730 0.716 

5 0.722 0.720 0.734 0.731 

10 0.734 0.713 0.739 0.733 

20 0.714 0.724 0.730 0.713 

50 0.741 0.743 0.745 0.736 

100 0.727 0.730 0.740 0.728 

200 0.720 0.731 0.713 0.716 

500 0.714 0.726 0.712 0.732 

1000 0.729 0.719 0.736 0.732 

2000 0.736 0.732 0.714 0.717 

3000 0.713 0.714 0.728 0.724 

5000 0.738 0.715 0.712 0.720 

The data from table 6 shown that the phenomenon of no 

convergence was not appear in the search process of chaotic 

time-series optimization algorithm. Closed to the Hantush 

calculation result 0.76, the search results of the hydraulic 

conductivity were all between 0.712 and 0.745. The selection 

of initial parameters can affect the search speed of the 

algorithm, but it has no overt effect on its search ability and 

search results. 

In addition the fluctuation of the search results of the 

leakage factor became large with the increasing of the initial 

value, which reduced the accuracy of the search results, the 

storage coefficient and the leakage factor also have the same 

conclusion as the hydraulic conductivity, after the same 

disposal method. The results of the other two observations 

wrer consistent with the results of the first observation well. 

6. Conclusion 

What conclusions we can got through the above analysis 

of the of chaotic time-series optimization algorithm and the 

calculation of the practical examples was that: ①chaotic 

time-series optimization algorithm can be effectively applied 

to the calculation problem of aquifer parameters; ②The 

difference of convergence value between rough search and 

fine search should be small enough and the closer the better; 

③The length of chaotic sequences was suitable for 100~600 

while the control of the times of rough search among 2~20; 

④In view of the influence of the leakage factor searching 

results, the initial values of the parameters should be close to 

the reference values of the parameters to be estimated. In 

short, the chaotic time-series optimization algorithm was a 

new and effective method to analyze the pumping test and 

determine the parameters of the aquifer. 
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